Computational study of decomposition algorithms for mean-risk stochastic linear programs

نویسندگان

  • Tanisha G. Cotton
  • Lewis Ntaimo
چکیده

Mean-risk stochastic programs include a risk measure in the objective to model risk averseness for many problems in science and engineering. This paper reports a computational study of mean-risk two-stage stochastic linear programs with recourse based on absolute semideviation (ASD) and quantile deviation (QDEV). The studywas aimed at performing an empirical investigation of decomposition algorithms for stochastic programs with quantile and deviation mean-risk measures; analyzing how the instance solutions vary across different levels of risk; and understanding when it is appropriate to use a given mean-risk measure. Aggregated optimality cut and separate cut subgradient-based algorithms were implemented for each mean-risk model. Both types of algorithms show similar computational performance for ASD whereas the separate cut algorithm outperforms the aggregated cut algorithm for QDEV. The study provides several insights. For example, the results reveal that the risk-neutral approach is still appropriate for most of the standard stochastic programming test instances due to their uniform or normal-like marginal distributions. However, when the distributions are modified, the risk-neutral approach may no longer be appropriate and the risk-averse approach becomes necessary. The results also show that ASD is a more conservative mean-risk measure than QDEV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Risk-averse Inventory-based Supply Chain Protection Problem with Adapted Stochastic Measures under Intentional Facility Disruptions: Decomposition and Hybrid Algorithms

Owing to rising intentional events, supply chain disruptions have been considered by setting up a game between two players, namely, a designer and an interdictor contesting on minimizing and maximizing total cost, respectively. The previous studies have found the equilibrium solution by taking transportation, penalty and restoration cost into account. To contribute further, we examine how incor...

متن کامل

Convexity and decomposition of mean-risk stochastic programs

Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criterion. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk objective, where some dispersion statistic is used as a measure of risk. We investigate the computational suitability of various mean-risk objective functions i...

متن کامل

User’s guide to ddsip.vSD – A C Package for the Dual Decomposition of Stochastic Programs with Dominance Constraints Induced by Mixed-Integer Linear Recourse

ddsip.vSD is a C-implementation of a number of scenario decomposition algorithms for stochastic linear programs with firstor second-order stochastic dominance constraints induced by mixed-integer linear recourse. The program is based on a previous implementation of scenario decomposition algorithms for mean-risk models of A. Märkert [20]. Main idea of the decomposition algorithms is the Lagrang...

متن کامل

Scenario-based modeling for multiple allocation hub location problem under disruption risk: multiple cuts Benders decomposition approach

The hub location problem arises in a variety of domains such as transportation and telecommunication systems. In many real-world situations, hub facilities are subject to disruption. This paper deals with the multiple allocation hub location problem in the presence of facilities failure. To model the problem, a two-stage stochastic formulation is developed. In the proposed model, the number of ...

متن کامل

Mean-risk objectives in stochastic programming

Traditional stochastic programming is risk neutral in the sense that it is concerned with the optimization of an expectation criterion. A common approach to addressing risk in decision making problems is to consider a weighted mean-risk objective, where some dispersion statistic is used as a measure of risk. We investigate the computational suitability of various mean-risk objective functions i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program. Comput.

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015